原标题:从可穿戴设备到纸币防伪,这种技术将走进我们生活的方方面面

近日,复旦大学信息科学与工程学院仇志军副教授与刘冉教授领导的科研团队在揭示有机薄膜晶体管(OTFT)性能稳定性机制上取得突破性进展,提出了一种水氧电化学反应与有机薄膜载流子相互作用的统一理论模型,这一成果有望加速柔性电子领域的大规模应用。相关论文发表在1月27日出版的国际权威性学术期刊《自然-通讯》(Nature
Communications)杂志上。

1月20日,顶级科学杂志《Nature》刊登了北京大学教授彭练矛和物理电子学研究所副所长张志勇课题组在碳纳米管电子学领域取得的世界级突破:首次制备出5纳米栅长高性能碳纳米管晶体管,并证明其性能超越同等尺寸硅基CMOS场效应晶体管,将晶体管性能推至理论极致。

近日,中国科学院深圳先进技术研究院喻学锋研究员团队与深圳大学教授张晗、武汉大学教授廖蕾团队合作,在二维黑磷领域取得新进展,通过金属离子修饰的方法制备出高稳定性高性能黑磷晶体管。相关成果发表于材料学领域刊物《先进材料》上。论文第一作者是博士郭志男,第一单位是中科院深圳先进院。

style=”font-size: 16px;”>复旦大学的研究者揭示了导致有机薄膜晶体管性能变化的机制,为进一步改良以有机薄膜晶体管为代表的柔性电子技术开拓了前景,从可穿戴设备到纸币防伪,柔性电子技术将有望走进我们生活。

物联网和智能物品的“最核心”技术——柔性有机薄膜晶体管(OTFT)

2月27日,央视新闻频道播出了专题节目《神奇的石墨烯》,(石墨烯上CCTV啦!新闻频道专题节目《石墨烯到底有多神奇?》(附视频)),节目中提到,石墨烯有望替代硅,成为下一代芯片的主要材料。利用石墨烯制造新一代器件,也有望让我国的芯片制造业实现弯道超车,达到国际先进水平。

近年来,与石墨烯一样拥有二维层状结构的黑磷展现出卓越的电学和光学特性,被视为新的超级材料,其在晶体管、光电器件、催化和生物医学领域拥有巨大应用潜力。然而,黑磷的不稳定性限制了其在很多领域深入的研究和应用。为解决黑磷的这一难题,喻学锋团队曾先后基于配位化学和共价化学原理,有效提高了黑磷的稳定性。然而,如何在增强稳定性的同时,保持甚至提高黑磷的电学性能是当前该领域所面临的一个关键难题。

1965年,英特尔创始人之一的戈登·摩尔(Gordon E.
Moore)提出,集成电路上可容纳的晶体管数目约每两年便会增加一倍。半导体技术已经以符合这种“摩尔定律”的趋势发展了数十年。然而,根据国际半导体技术发展蓝图组织(ITRS)的评估,这种发展势头将会减慢。而另一方面,有机薄膜晶体管(OTFT)作为印制电子关键技术,则在几年间获得了长足进展。

在过去的半个多世纪里,以集成电路为基础的信息技术突飞猛进,引发了人类生产和生活方式的深刻变革。随着半导体器件尺寸走向量子极限,传统的硅集成电路技术在未来10~15年可能走到尽头,支撑了集成电路半个多世纪发展的摩尔定律开始走向终结。

众所周知,全球的集成电路产业一直在摩尔定律的“照耀”下沿着硅基的路线前行,但当主流的CMOS技术发展到10纳米技术节点之后,后续发展越来越受到来自物理规律和制造成本的限制,摩尔定律有可能面临终结。20多年来,科学界和产业界一直在探索各种新材料和新原理的晶体管技术,期望替代硅基CMOS技术,但到目前为止,并没有机构能够实现10纳米的新型器件,并且也没有新型器件能够在性能上真正超过最好的硅基CMOS器件。

在本项研究中,研究团队发明了一种金属离子修饰黑磷的方法,通过阳离子-π相互作用,在溶剂中自由分散的金属阳离子可以自发的吸附到黑磷的表面,钝化黑磷中磷原子的孤对电子,进而极大提高了黑磷片层的稳定性。与此同时,金属离子的修饰过程相当于在黑磷中引入了更多的空穴,可调控本来双极性偏p型的黑磷的半导体特性,其空穴传导侧的输运性质得到进一步提升。如银离子修饰后,黑磷的载流子迁移率提高了一倍,开关比提高两个数量级。由于金属离子和黑磷之间是一种较弱的超分子相互作用,金属离子对黑磷的修饰过程较之前开发的化学方法更加可控,而且普适性更高,除银离子外,镁离子、铁离子、汞离子都可以实现对黑磷稳定性的增强和半导体特性的调控。

有机薄膜晶体管研究可追溯到上世纪80年代。由于有机薄膜晶体管有良好的柔韧性,并具备厚度小、能弯曲等常规硅基微电子器件不易具备的特点,相关研究旋即受到广泛关注。复旦大学信息科学与工程学院仇志军副教授与刘冉教授领导的研究小组,继将有机薄膜晶体管的工作速度提升至可实用的量级后,又揭示了影响有机薄膜晶体管性能稳定性的本质机理。

在这种新的形势下,信息科技在后摩尔时代必须有新的基础性突破和发展。与此同时,人类社会将全面进入信息网络社会和知识文明时代,信息网络将成为人类最重要的基础设施和公共资源,成为国家、社会法人和个人重要的生存发展平台。信息科技也将步入信息网络、物理世界和人类社会三者动态交互、全面融合的物联网时代。

碳基超越硅基?

这种技术为制备高稳定性、高性能黑磷晶体管提供了一种简单有效的新方法,并可极大拓展黑磷在各种电子和光电器件领域的应用。

目前有机薄膜晶体管的发展主要面临两大难题。“一个是迁移率的问题,有机薄膜晶体管导电能力差,因此应用起来就比较困难。另外一个问题在于可靠性,有机薄膜晶体管在应用时可能不稳定。”刘冉教授介绍道:“这些年在提高迁移率方面获得不少进展。近两年我们开始研究第二个问题。”

未来可以预见,世界上任何一个物体从轮胎到牙刷、从房屋到纸巾,都可以通过物联网进行信息交换。在那时,射频识别技术、传感器技术、纳米技术、智能嵌入技术等将得到更加广泛的应用。

2005年,国际半导体技术线路图(ITRS)委员会首次明确指出在2020年前后硅基CMOS技术将达到其性能极限。后摩尔时代的集成电路技术的研究变得日趋急迫,很多人认为微电子工业在走到7纳米技术节点之后可能不得不面临放弃继续使用硅材料作为晶体管导电沟道。在为数不多的可能替代材料中,碳基纳米材料被公认为最有可能替代硅材料。

本项工作得到了国家自然科学基金、中科院前沿科学研究重点计划、深圳市孔雀团队、深圳市基础研究布局等项目的资助。

此前国际上对导致有机薄膜晶体管不稳定性的原因众说纷纭,而复旦大学的研究者提出了一个相对具有普适性机制模型:

搭建物联网的基础是数以亿计的信息传感设备。由于柔性电子特有的弯曲性和可延展性,使其在与物的结合中发挥出重要的作用,成为桥接“物”与“云”的关键技术。正因如此,基于有机半导体材料和纳米材料等的柔性大面积电子技术在后摩尔时代得到迅猛发展。

2008年ITRS新兴研究材料和新兴研究器件工作组在考察了所有可能的硅基CMOS替代技术之后,明确向半导体行业推荐重点研究碳基电子学,作为未来5~10年显现商业价值的下一代电子技术。美国国家科学基金委员会(NSF)十余年来除了在美国国家纳米技术计划中继续对碳纳米材料和相关器件给予重点支持外,在2008年还专门启动了“超过摩尔定律的科学与工程项目”,其中碳基电子学研究被列为重中之重。其后美国不断加大对碳基电子学研究的投入,美国国家纳米计划从2010年开始将“2020年后的纳米电子学”设置为3个重中之重的成名计划(signatureinitiatives)之一。除美国外,欧盟和其他各国政府也高度重视碳纳米材料和相关电子学的研究和开发应用,布局和继续抢占信息技术核心领域的制高点。

论文链接

图片 1

与传统电子器件相比,柔性电子技术拥有众多优点:(1)器件可弯曲与伸展,由此可诞生众多新型应用领域;(2)可以在柔性和大面积衬底上采用大规模印刷技术加工实现,生产成本低廉;(3)加工设备简单,前期投入成本低;(4)加工过程属于低温工艺,工艺简单,不会对环境造成污染。

碳纳米管材料中,最有可能替代硅的有两个,碳纳米管和石墨烯。在石墨烯获得诺贝尔奖之前,碳纳米管一直被认为是最有可能代替硅的半导体材料,而如今,由于石墨烯在全球范围内的狂热,似乎有代替碳纳米管之势,那么,石墨烯和碳纳米管,究竟谁能堪当大任呢?

图片 2

有机薄膜晶体管不稳定性机制模型。

因此从某种意义上说,由于其与各种“物”良好的集成性和结合性,可以形成诸如智能包装、可穿戴的健康护理产品等,柔性电子技术成为促成物联网真正普及和大规模应用的“最核心”技术。大面积柔性有机薄膜晶体管(OTFT)和相关集成电路开始受到科研人员的青睐。

碳纳米管集成电路的研发优势与发展现状

金属离子修饰黑磷示意图; 黑磷晶体管显微照片和结构示意图;
银离子修饰黑磷晶体管的载流子迁移率和开关比。

http://www.summer1942.com ,暴露在空气中的有机薄膜晶体管会与空气中的水和氧气发生接触。在正向电压作用下,水分子和氧分子发生电化学反应,在器件表面形成带负电荷的氢氧根离子(OH﹣),这使得器件中带正电荷的载流子(器件中可自由移动的、带有电荷的物质微粒)被氢氧根离子束缚,导致器件无法正常工作。

早在上世纪80年代初,国外就有科学家开始尝试用有机半导体材料替代硅材料作为导电沟道,构成新型薄膜场效应晶体管(TFT),开创了有机薄膜晶体管(OTFT)研究。OTFT质轻,膜薄,具有良好的柔韧性,还可以大面积“印刷”在任意材料表面,达到大幅降低生产成本目的。不同于常规硅基微电子器件,OTFT具有加工工艺简单、成本低廉和易弯曲等优点而赢得广泛关注。

1991年,日本NEC公司的饭岛澄男在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由碳分子组成的管状同轴纳米管,也就是现在被称作的碳纳米管CNT,又名巴基管。

而在施加反向电压后,由于氢氧根离子发生逆向反应,被束缚的载流子又重获自由,在器件中正常流动。“晶体管有一个非常重要的功能,就是逻辑操作。原来晶体管是开着的,给它赋予的是1的状态,但过一段时间突然从1这个状态跳到0,这是我们所不希望的。”
仇志军指出:“(载流子)一会儿被锁住,一会儿又会被释放出来,没法控制,所以导致稳定性比较差。”

http://www.xmovoe.com ,但令人遗憾的是,当时器件载流子迁移率极低,只有10﹣5
cm2/Vs,远低于非晶硅材料,从而导致器件工作速度慢而且极易在空气中退化。材料中的迁移率是用来表征载流子(电子或空穴)在半导体材料内运动速度的快慢,迁移率越高,器件的运行速度也就越快。

碳管材料具有极为优秀的电学特性。室温下碳管的n型和p型载流子(电子和空穴)迁移率对称,均可以达到10000cm2/(V?s)以上,远超传统半导体材料。另外碳管的直径仅有1~3nm,更容易被栅极电压非常有效开启和关断。

http://www.syn110.com ,这种描述水氧电化学反应和有机薄膜载流子间相互作用的模型,很好地解释了有机薄膜晶体管不稳定性的发生机制。根据这个模型,研究人员可能利用在有机薄膜晶体管的表面加合适的保护层等手段克服当前有机薄膜晶体管的不稳定性。

在过去近30年的研究过程中,各国科学家在材料、器件、系统集成以及制备工艺方面取得了一定进展,但仍面临诸多困难和挑战。与成熟的硅器件相比,目前OTFT的大规模应用存在两大障碍,一是电流驱动能力不够、迁移率低下,二是可靠性差、寿命短。

碳纳米管相对于硅材料的优点:

谈及有机薄膜晶体管在未来的应用,刘冉表示:“有机薄膜晶体管并不能取代硅的集成电路,但能够实现一些新的应用。”以有机薄膜晶体管为代表的柔性电子技术具有器件可伸展弯曲、加工设备相对简单、成本低廉等优点,在大面积的柔性显示设备及低成本的智能电子标签等领域具有广阔的应用前景。

国际前沿的领跑者

1)载流子输运是一维的。这意味着减少了对载流子散射的相空间,开辟了弹道输运的可能性。相应地,功耗低。

相关文章

网站地图xml地图