近日,中国科学院南海海洋研究所研究员刘永宏课题组助理研究员廖升荣与美国加州大学教授张立明及意大利帕维亚大学教授Giuseppe
Zanoni合作,以南海海洋所为第一单位在《德国应用化学》杂志(Angew. Chem.
Int. Ed.
)上发表题为Bifunctional Ligand Enables Efficient
Gold-Catalyzed Hydroalkenylation of Propargylic Alcohol
(2018, 57,
8250–8254)
的研究论文,首次报道了在双功能配体Au催化剂的催化下,通过分子间有机烯基硼酸盐底物对炔烃的加成,高效、快速、室温条件下合成末端取代的支链二烯醇衍生物。

近日,中国科学院南海海洋研究所研究员刘永宏课题组助理研究员廖升荣与美国加州大学教授张立明及意大利帕维亚大学教授Giuseppe
Zanoni合作,以南海海洋所为第一单位在《德国应用化学》杂志(Angew.Chem.Int.Ed.)上发表题为Bifunctional
Ligand Enables Efficient Gold-Catalyzed Hydroalkenylation of Propargylic
Alcohol(2018,57,8250–8254)的研究论文,首次报道了在双功能配体Au催化剂的催化下,通过分子间有机烯基硼酸盐底物对炔烃的加成,高效、快速、室温条件下合成末端取代的支链二烯醇衍生物。

近日,我校化学系本科毕业生陈伟豪(第一作者,我校13级本科生,2017年毕业)及陈阳在国际顶尖化学期刊《德国应用化学》(Angew.
Chem.
Int.Ed.)上发表论文。他们采用了新颖的NHC过渡金属催化剂,实现了烯醚与末端烯烃的交叉氢烯基化反应(cross-hydroalkenylation),首次高效地合成了在有机合成上很重要的1,2-和1,3-双取代烯丙基醚。这一项工作由化学系副教授何振宇指导、博士后李扬共4人合作完成。

异戊烯基化(prenylation)是生物体内的一个重要过程,很多具有生理活性的天然产物都具有异戊基烯基基团,例如青蒿素、紫杉醇、胆固醇等萜类化合物。除此以外,异戊烯基也可以在酶的催化作用下镶嵌在吲哚等小分子代谢物上,得到一些具有异戊烯基取代的吡咯并吲哚啉结构的生物碱。但是该过程新产生的手性中心通常依赖于手性的天然色氨酸底物;而且由于酶催化反应的专一性等特点,底物范围也比较受限。因此发展新型的催化不对称方法以期高效高对映选择性地构建此类结构具有重要的意义。

末端取代支链二烯醇结构是海洋天然产物大环内酯amphidinolide家族(C1、C2、C3和F等)的重要结构单元,也是海洋天然产物如-amphirionin-4和halicyclamine
A等的重要合成中间体。利用该方法能够高效、条件温和地构建这些天然产物中的邻二烯醇结构,并且操作简便,无需无水无氧高温等严苛反应条件,该方法为这类海洋天然产物的合成提供了一种新的思路。

mgm娱乐登录地址 1

含取代基的烯丙基醚是常见和有用的有机合成底物,但在过去的几十年来它们仍然很难直接且有效地获得。它们的合成经常需要使用当量的金属,卤素或者反应添加剂,结果使合成和废物处理两方面的成本都很高,大大限制了其大规模的合成及应用。因此,如何能使用简单的底物,如何通过发展环境友好的催化合成方法,来合成这些常用的烯丙基醚是一个非常重要的问题,这个难题一直吸引了大量化学家的目光。

中国科学院上海有机化学研究所金属有机化学国家重点实验室游书力研究团队首次提出并一直致力于催化不对称去芳构化反应的发展,该策略能够简单高效地将平面芳香化合物转化成具有三维结构的复杂手性分子(Angew.
Chem. Int. Ed.
2012, 51, 12662. Chem 2016, 1,
830)。受酶催化异戊烯基化去芳构化反应的启发,他们最近实现了钯催化的吲哚衍生物不对称异戊烯基化去芳构化反应,高效地构建了一系列含有异戊烯基取代的吡咯并吲哚啉类生物碱(http://www.ivideocrew.com ,Nature
Catalysis
http://www.purses86.net , DOI:
10.1038/s41929-018-0111-8)。该方法使用的底物简单易得,大大拓宽了不对称异戊烯基化去芳构化反应的底物范围;并且研究团队展示了该方法在相关吡咯并吲哚啉类天然产物的合成中可以大大缩短步骤。

末端取代支链二烯醇的常见合成方法是采用Suzuki
Miyaura反应,利用烯基硼酸底物与支链卤代烯烃发生C-C偶联而得到。但由于卤代支链底物需要特殊制备,以及产物烯键邻位羟基的手性在催化偶联过程中较难维持,而使得其制备过程难度较大,Suzuki
Miyaura反应需要无氧高温反应条件,操作繁琐,条件苛刻,亟需发展操作简单、高效、条件温和的合成方法。为克服上述缺点,设计构建的末端取代支链二烯醇的一种新方法,实用性强、范围广。适用于多取代的烯基硼酸盐和炔醇,也适用于含有不饱和键、杂环、酯基、酰胺、硅基等的多种底物。不需要无水无氧条件,室温下便可进行反应。

过渡金属催化的交叉氢烯基化反应具备极高的原子经济性和步骤经济性,理论上它是一种能够把大量的烯醚与末端烯烃底物转换为成各种各样烯丙基醚的理想方法。然而,此前化学家们已进行了多次尝试,但仍然受限于不利的副反应(例如氧的孤对电子与过渡金属的不利配位作用以及b-OR消除反应等等)
,结果烯丙基醚一直只能以次要产物或以非常低的收率形成。

值得注意的是,相较于普通的烯丙基,异戊烯基表现出了更突出的位阻效应,并导致该烯丙基钯物种的活性更低,反应的选择性也更难控制,这也是异戊烯基化反应的难点所在。使用烯丙基取代反应中常用的Trost、BINAP、PHOX等配体时效果都很差。而该课题组新发展的亚磷酰胺配体Allylphos是获得高对映选择性控制的关键;进一步的机理研究发现活性的催化剂是一个钯离子同时和一个配体中的磷原子和烯烃配位,现场制备钯催化剂需要使用过量的金属钯前体。

相关文章

网站地图xml地图